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Abstract

Convective heat transfer is studied in a laminar boundary layer over a concave wall in the presence of G€ortler
vortices with constant wall heat flux conditions. Comparison of local Nusselt and Stanton numbers demonstrates that

the latter is more accurate in revealing three-dimensional flow development. Analysis of heat transfer with different

freestream velocities shows that the Reynolds similarity is not valid in the presence of G€ortler centrifugal instability and
indicates that the G€ortler number based on the Blasius momentum thickness enables one to follow the different steps of
G€ortler instability development. Analysis of the effects of the G€ortler vortex wavelength and of perturbation wire
diameter shows that the smaller the vortex wavelength, the faster the apparent transition to turbulence. Moreover,

larger wire diameters also cause a faster boundary-layer transition.

It has been shown experimentally that in the range of heat loading studied here, the buoyancy force has no effect on

G€ortler vortex generation and growth.
� 2004 Elsevier Ltd. All rights reserved.
1. Introduction

The boundary-layer transition on a concave wall is

complicated by the presence of a centrifugal instability

phenomenon called G€ortler instability resulting from an
imbalance between the centrifugal force and the radial

pressure gradient. The G€ortler number Gh indicates the

relative influence of centrifugal and viscous forces on

fluid particle motion, where h is the Blasius momentum
thickness. Even though Hall [1] has demonstrated that

there is no neutral stability curve, Gh P 1 generally

implies that the boundary layer is unstable.

G€ortler instability is at the root of several physical
phenomena with technological applications, such as heat

transfer on gas turbine blades [2] or premature transition
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to turbulence of flows on laminar profiles of new gen-

eration (LFC) [3]. Longitudinal vortex structures can

occur directly in a boundary layer by different physical

mechanisms such as G€ortler instability (counter-rotat-
ing) or cross-flow instability (co-rotating). The existence

of longitudinal vortices in a boundary layer on a con-

cave wall was predicted by G€ortler [4]. Blackwelder [5]
showed the analogy between the striations present in the

wall region of a turbulent boundary layer and the

G€ortler vortices. In this context G€ortler instability pro-
vides a fundamental generic flow for studying flows in

the presence of longitudinal vorticity. Some preliminary

observations of Chomaz and Perrier [6] and Chomaz [7]

of G€ortler flow on a concave wall provide evidence for
the nonlinear convective nature of the instability, in

qualitative agreement with the theoretical study of Park

and Huerre [8]. The relevant feature is the sensitivity of

the instability to the amplitude of the initial pertur-

bations. G€ortler vortices cannot be detected at zero
forcing. Nonetheless, the application of a localized

steady excitation close to the origin of the flow gives rise
ed.
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Nomenclature

Cp heat capacity
J

kg:K

� �
dw wire diameter (m)

Gh G€ortler number
Unh
t

ffiffiffi
h
R

r !

H height of the counter wall, H ¼ 0:15 (m)
Nu local Nusselt number Nu ¼

upx

kDT
Pr Prandtl number, Pr ¼ m

K
R wall radius of curvature (m)

Re Reynolds number
Unx
t

� �

St Stanton number
uw

qCpUpwðTwall � T1Þ

� �

Tf film temperature, Tf ¼
ðTp þ T1Þ

2
(K)

T1 or Tinf free stream temperature (K)

Tw wall temperature (K)

U Longitudinal component of velocity (m/s)

Un free stream velocity or nominal velocity

(m/s)

Upw potential wall velocity, Upw ¼ Un
R
H lnð1� H

RÞ� 0:88 Un (m/s)
x streamwise direction (m)

y normal to the wall direction (m)

z spanwise direction (m)

a wavenumber

K thermal diffusivity
m2

s

� �
t kinematic viscosity (m2/s)

q density (kg/m3)

uw wall heat flux (W/m2)

uL heat flux loss (W/m2)

h Blasius momentum thickness h ¼
0:664xðReÞ�1=2 (m)
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to a spatially growing perturbation for forcing ampli-

tudes above a definite threshold.

Another important characteristic of an instability

developing in an open flow is its receptivity to initial

perturbations, in other words, the absolute or convective

aspect of the instability. It is generally agreed that insta-

bilities in open flows are often convective and can become

absolute after a second threshold. The primary G€ortler
instability is considered a convective instability [8].

Streamwise evolution of the vortices was studied by

using longitudinal velocity measurements in the y–z
plane [9]. The need to follow the spatial development of

the vortices is a consequence of the open-system nature

of G€ortler instability. Unlike Taylor–Couette instability,
where the disturbances are confined between two con-

centric cylinders, boundary-layer disturbances that enter

the flow are convected out of it and leave the system.

Behind this intuitive insight is in fact a more funda-

mental notion of convective or absolute instabilities. In a

very schematic way, one can say that a flow is convec-

tively unstable if the energy of the initial disturbances is

propagated more quickly than it is produced. In other

words, a periodic-steady disturbance, in a convectively

unstable flow, must be maintained by external sources.

Freestream fluctuations in a wind tunnel can constitute

precisely such disturbance sources. For absolute, the

disturbances need not be maintained by external sources

necessary since the temporal amplification of the dis-

turbances is sufficient to contaminate the flow [10].

More generally, determination of the convective or

absolute character of the instability makes it possible to

privilege a spatial-global or temporal-local step. This

has particular practical importance since, according to
Huerre and Monkewitz [11], the introduction of a probe

into an absolutely unstable flow such as Taylor–Couette

instability or Rayleigh–B�enard convection can be the
origin of disturbances whose amplification can con-

taminate the whole flow. Park and Huerre [8] studied

primary and secondary instabilities in an asymptotic

suction boundary layer on a concave wall and showed

that it is in fact a convective instability. Therefore,

experimental investigation of this instability must take

into account the spatial evolution of the vortices. Pe-

titjeans [12] carried out two types of experiment: a local

type that entailed varying freestream velocity and mea-

suring velocity distribution in a normal section at a fixed

position x, and a second series that let him follow the
evolution of the vortices by maintaining the flow free-

stream velocity constant. These experiments showed that

the results can differ for given G€ortler wavenumbers.
Due to the convective nature of G€ortler flow, we have
opted to privilege the spatial step and follow the longi-

tudinal evolution of the vortices.

In G€ortler flow, the stability diagram (Fig. 1) is an
important guide for experimental measurements in

developing boundary layers [1,13,14]. The G€ortler
number Gh can be written in the form Gh ¼ KaðhaÞ3=2,
where a is the spanwise wavenumber and Ka ¼

ReRðaRÞ�3=2, where ReR ¼ UnR
t
is the curvature Reynolds

number. In a given experiment, for a fixed constant

observed wavenumber, the local G€ortler number in-
creases as h3=2 and the coefficient Ka is a constant

characterizing that particular experiment in the

ðGh; ðahÞÞ plane [14]. However, Swearingen and

Blackwelder [14] define the coefficient K using the



Fig. 2. Schematic diagram of the model (dimensions in mm).

Fig. 1. Different experimental results superposed on the sta-

bility diagram. Experimental domains shown by constant K
lines for the present work: (DÞUn ¼ 4:8 m/s, k ¼ 1:5 mm; (�)
Un ¼ 3 m/s, k ¼ 2 cm; Swearingen and Blackwelder (d) and;
Bippes (	). Floryan and Hall marginal stability curves are also
shown.
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wavelength k ¼ 2p
a , so that Kk ¼ ReRðk

RÞ
3=2
. Although

statistically their experiments gave k � 23 mm (corre-

sponding to Kk � 650), the definite quantitative data to
which Sabry and Liu [15] numerical results agreed was

k � 18 mm, which Kk � 460. Experiments of Bippes [16]
and of Aihara and Koyama [17,18] fall on Kk � 210 and
Kk � 235, respectively. The initial G€ortler instabilities
observed in the above-mentioned experiments occur,

without exception, in the ‘amplified region’ (nonlinear)

of the stability diagram and follow constant Ka or Kk

lines. Fig. 1 superposes different experimental results on

the stability diagram, and Table 1 summarizes the values

of K for different experimental configurations studied

here. We define the coefficient K using the wavelength,
so that Kk ¼ UnR

t ðk=2R Þ
3=2
.

An overview of the effects of G€ortler instability on
heat transfer is given by Peerhossaini [19]. In the present

work, we report on measurements of wall temperature

field in the presence of longitudinal vortices forced by an

array of wires vertically fixed upstream of a concave
Table 1

Values of K for different experimental configurations in the present w

U (m/s) k (mm)

2.5 5 10

2 20 58 164

3 31 87 246

4.8 49 139 394

7 72 203 575
boundary layer. By varying the distance between the

forcing wires we controlled the wavelength of the longi-

tudinal vortices propagated in the curved boundary

layer under the effect of G€ortler instability.
The aim of the present work is to provide a method of

global analysis to help in the prediction of heat transfer

in a boundary layer over a concave surface. Results show

that Stanton and G€ortler numbers based on theoretical
potential wall velocity Upw and Blasius momentum

thickness h on a flat plate are as useful as these numbers
calculated based on the real local values of h and Upw,
which need extensive measurement. Boundary-layer

sensitivity to various steady perturbations is also studied

through heat-transfer enhancement by the vortices and

their effect on the transition to turbulence.
2. Experimental apparatus and methods

2.1. Experimental rig and measurement techniques

This study was carried out in a wind tunnel of suction

type with freestream turbulence intensity less than 0.7%.

The model used (Fig. 2) is composed of a thick leading

edge of half a NACA-0024 airfoil, a concave part with

radius of curvature 65 cm, a convex part with radius of

curvature 15 cm, and a flat-plate trailing edge. The

present study used only the concave part of the model,

where the G€ortler instability occurs. More details on the
wind tunnel and concave–convex model used in this

work can be found in Peerhossaini and Bahri [20]. In

presenting the results, the origin of the longitudinal
ork

15 20 25 30

301 465 649 854

453 697 974 1280

724 1115 1558 2049

1056 1626 2273 2988
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curvilinear coordinate x is taken at the stagnation line
of the leading edge.

The initial disturbances are generated by means of

perturbation grids made up of a series of forcing wires of

diameter 0.18 mm or 0.80 mm and with 5, 10, 20, 30, 40,

50, and 60 mm spanwise wavelength. The grid is placed

vertically 4 mm upstream of the leading edge. The

principal role of this perturbation grid is to fix the dis-

tance between vortices and their spanwise positions. The

model wall is heated with a constant heat flux up ¼ 200
W/m2 using double-layered resistive sheets of 130 lm
thickness. The heated surface begins at the leading edge

and ends at the end of the convex part. The upper layer

of the heating sheet in contact with the fluid is a film of

constantan of 70 lm thickness heated by the Joule effect.
Its lower layer, of thickness 60 lm, is of kapton so as to
assure electric isolation of the back face of the heating

film. The double-layered heater is fixed on the model

wall by a double-faced adhesive that resists temperatures

above 100 �C. One hundred and ninety chromel–alumel-
type thermocouples of 80 lm diameter were embedded
in the double-faced adhesive tape so that their beads are

in contact with the kapton part of the heating sheet.

Thermocouples are placed in such a way (Fig. 3) that the

longitudinal evolution of the wall temperature can be

followed as well as its spanwise variation at several

longitudinal positions. Thermocouple signal acquisition

was carried out by a Keythley K-199 microvoltmeter.
Fig. 3. Position of the thermocouples embedded in the concave

wall.
The special geometry of the model causes a nonuni-

form heat loss from the back of the concave–convex wall

that varies with x. To minimize this heat loss, the con-
cave–convex wall was isolated from behind by 3 cm

thick phenolic foam (k ¼ 0:02 W/mK). The back-wall
heat-loss flux was measured by four thermocouples

placed in the foam at four streamwise distances. Heat

loss varied between 6 and 7 W/m2, which is between 3%

and 3.5% of the constant heat flux delivered by the

electric resistive heating sheet. Fig. 4 shows the heat loss

percentage as a function of x. The small thickness of the
resistive film, its high thermal conductivity (on the order

of 0.4 W/mK) and the heat losses below 8 W/m2 result in

temperature differences less than 0.01 �C between the
measured temperature and the real temperature of the

wall.

Three lines of 40 thermocouples each let us follow the

evolution of the temperature field in the flow direction.

The spanwise distance between the three rows is 1.5 cm.

In order to investigate the spanwise distribution of the

wall temperature (upwash and downwash zones) at

given axial positions, rows of 15 thermocouples are also

implanted in the spanwise direction at downstream

positions x ¼ 5, 15, 31, 49 and 58 cm. The Stanton
number is obtained from wall temperature measure-

ments. The perturbation grid was designed and posi-

tioned so that the thermocouple lines coincided with two

upwash zones situated at z ¼ �1:5 cm and z ¼ þ1:5 cm
and one downwash zone situated at z ¼ 0 cm (symmetry
line).

Fig. 5 plots the spanwise distribution of wall tem-

perature for the five streamwise distances. At x ¼ 5 cm,
under flow acceleration caused by the model nose, the

values of Twall � Tinf (�C) are small, as are their spanwise
variations. At x ¼ 15 and 31 cm the boundary layer is
Fig. 4. Percentage of heat loss by conduction from the back of

the concave–convex wall plotted as a function of axial position

for Un ¼ 4:8 m/s, dw ¼ 0 and up ¼ 200 W/m2.



Fig. 7. Choice of the characteristic velocity for Stanton number

scaling for dw ¼ 0 and Un ¼ 4:8 m/s.

Fig. 5. Spanwise distribution of the wall temperature at five

streamwise positions for Un ¼ 4:8 m/s, dw ¼ 0, and up ¼ 200 W/
m2.
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already formed but unsteadiness and turbulence have

not yet set in. From x ¼ 49 cm the boundary layer be-
comes unsteady and transition starts, so that the wall

temperature decreases.

Fig. 6 shows the evolution of the Stanton number

obtained with the wall temperature measured by the

three thermocouple lines at z ¼ �1:5, 0, +1.5 cm. It is
clear that they follow similar evolutions.

Flow velocity was measured by a Pitot tube. Due to

the streamline curvature of the concave wall, the char-

acteristic velocity is the wall potential velocity Upw rather
than the freestream velocity Un. The wall potential

velocity is defined as Upw ¼ Un
R
H lnð1� H

RÞ
, where H is the

height of the counter wall and R the concave wall radius
Fig. 6. Evolution of the Stanton number in the longitudinal

direction for Un ¼ 4:8 m/s and different transverse positions Z.
of curvature (R > 0 for concave wall). In the present
experiments Upw � 0:88 Un is obtained theoretically by
calculating the potential velocity at y ¼ 0 or experi-
mentally by extrapolation to the wall of the experi-

mental points measured outside the boundary layer far

from the wall. Fig. 7 shows the variation of the Stanton

number with Reynolds number as calculated with Upw
and Un. It can be seen that the Upw curve better matches
the correlations in the laminar and turbulent regime.

In the rest of this paper Upw is chosen as the scaling
velocity for calculation of the Stanton number.

2.2. Dynamical and thermal regimes

Wall heating has destabilizing effects on a boundary-

layer flow. First, the increase in the air temperature close

to the wall increases the air kinematic viscosity, which

causes fluid deceleration close to the wall. This deceler-

ation produces an inflection point in the velocity profile,

which is a destabilizing mechanism in a boundary layer

[21]. Second, at the same time the air density close to the

wall decreases, modifying the gravitational force com-

pared to isothermal flow and potentially triggering a

thermo-convective instability in the boundary layer.

Kamotami et al. [22] give an estimate of the effects of the

temperature variation on the flow stability on concave

wall. They showed that these effects depend on the ratio

of Gr=G2h and become important for values of this ratio
higher than the unity, where Gr is the local Granshoff
number based on the boundary-layer thickness and Gh is

the G€ortler number:

Gr ¼ gbDT
t2


 tx
Un

� �3=2



Fig. 8. Longitudinal evolution of the Stanton number accord-

ing to various densities paritial heat flux for Un ¼ 3 m/s and
Z ¼ 4 cm.

Fig. 9. Evolution of the Stanton number versus Reynolds

number for Un ¼ 4:8 m/s in the absence of the vortex-triggering
grid.
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and

Gh ¼
Und
t

ffiffiffi
d
R

r
with d ¼

ffiffiffiffiffiffi
tx
Un

r

In the present experiment (at x ¼ 30 cm, DT ¼ 15:5 �K,
Un ¼ 4:8 m/s), the value of this criterion is well below 1
ðGr=G2h ¼ 0:015Þ. Therefore wall heating does not play a
dominant role in flow destabilization. This fact is con-

firmed in Fig. 8, where one can observe that heating the

wall with different values of heat flux, does not affect the

longitudinal evolution of the heat transfer coefficient.

Even with a fourfold increase in the wall heat flux,

the variation in the Stanton number remains below

measurement accuracy (5%).
Fig. 10. Evolution of the Nusselt number versus Reynolds

number for Un ¼ 4:8 m/s in the absence of the vortex-triggering
grid.
3. Results

3.1. Nusselt or Stanton scaling

Wall heat transfer is identified by the Stanton num-

ber St, which is calculated from the measured wall

temperatures and the wall heat flux. In this section we

focus on the evolution of heat transfer on the concave

wall. The coefficient of local convective heat transfer

between the fluid and the wall can be reduced to either

the local Nusselt or Stanton number. Figs. 9 and 10

show the evolution of these two numbers as a function

of Reynolds number based on the curvilinear axial po-

sition for Un ¼ 4:8 m/s in the absence of the vortex-
triggering grid. The experimental results are compared

to the correlations for heat transfer on a flat plate [23]

in the constant heat flux condition:
• laminar flow: St ¼ 0:453Pr�2=3 Re�1=2x ;

• turbulent flow: St ¼ 0:03 Pr�0:4 Re�0:2x .

These correlations are used as references for the

evolution of heat transfer along the concave sur-

face.

Four different stages of the longitudinal evolution of

the boundary layer can be distinguished in Figs. 9 and

10:

• Zone OA. This zone corresponds to the leading edge

and its junction with the concave part. In this zone



Fig. 11. Evolution of the Stanton number versus Reynolds

number for various free-stream velocities in the absence of the

vortex-triggering grid.

Fig. 12. Evolution of the Stanton number versus G€ortler
number for various free-stream velocities in the absence of the

vortex-triggering grid.
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Nu and St follow approximately the curves corre-

sponding to the laminar boundary layer on the flat

plate (2D steady-laminar flow). Deviation of the first

few points is due to flow acceleration at the leading

edge.

• Zone AB. Here heat transfer on the concave wall

deviates gradually from the flat plate with the appear-

ance of a ‘‘plateau’’ with roughly constant Stanton

number. This heat-transfer intensification is re-

lated to the growth of the G€ortler vortices under
the effect of centrifugal instability (3D steady-laminar

flow).

• Zone BC. The heat transfer coefficient gradually

reaches values close to or above the turbulent bound-

ary layer values on a flat plate. This rapid increase of

the heat transfer coefficient (St or Nu) is due to the
appearance of the secondary instability of the G€ortler
vortices [24]. Indeed, once the G€ortler vortices reach
a sufficient strength, the subsequent longitudinal

velocity gradients cause inflection points where shear

instability develops (3D unsteady flow); this second-

ary instability grows rapidly and induces a premature

(compared to the flat plate) boundary-layer transi-

tion to turbulence.

• Zone CD. Heat transfer ceases to increase and fol-

lows the flat-plate turbulent curve. It has been ob-

served [25] that turbulent spots are present in the

boundary layer at these G€ortler numbers. As Kesto-
ras and Simon [26] and also To�e et al. [24] have
noted, the heat-transfer level of the turbulent bound-

ary layer is higher on the concave wall than on a flat

plate. This heat-transfer enhancement in the turbu-

lent regime can be explained by the mechanisms

responsible for heat-transfer enhancement in the lam-

inar flow: the primary G€ortler instability induces lon-
gitudinal vortices that are not completely broken

down by transition and thus are still weakly present,

even in the mean velocity profiles; the secondary

instability induces large-scale coherent vortices in

the turbulent flow that are more efficient for trans-

port than the smaller turbulent scales.

Fig. 10 shows the same phenomena as Fig. 9, but the

local Nu value has a strong dependence on x and
therefore its variation with Re is marked by propor-
tionality to x. On the other hand, variations of St are
particularly marked by a minimum value just before the

appearance of unsteadiness. Therefore it is more

appropriate to use the Stanton number in describing

heat transfer in the laminar regime because its evolution

allows immediate comprehension of the flow state in

various longitudinal positions. Moreover, St has the
advantage of being analogous to the friction coefficient,

i.e. it is physically more interesting than Nu. However,
present results show that the local Nu varies weakly with
Re in zone OA, so that we could readily estimate the
mean value of Nu on the concave wall before the
appearance of the secondary instabilities.

3.2. Reynolds or G€ortler scaling

Fig. 11 shows the variation of St as a function of Re
for various values of nominal velocity. The Reynolds

number corresponding to the point A at which experi-
mental curves deviate from the laminar flat-plate curve

varies for different nominal velocities. Fig. 12, which

plots the same curves as a function of Gh, shows that

point A (deviation from the laminar flat-plate curve)
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occurs at the same Gh (i.e. Gh � 3:5) for different nom-
inal velocities. Moreover, the points B where the con-
stant St ‘‘plateau’’ ends also occur at the same value of
Gh for different nominal velocities (Gh � 6). This sug-
gests that in the actual experimental results, Gh is a

better scaling parameter than Re for heat-transfer evo-
lution, so that in this sense the G€ortler number is a
better similarity parameter than the Reynolds number.

Liepmann [27] also observed that the transition to tur-

bulence for different experiments occurred at values of

Gh between 6 and 9, where h was the spanwise-averaged
momentum thickness of the boundary layer. Although

Gh is based on a characteristic Blasius boundary-layer

thickness in the present work, the transition was found

at around Liepmann’s value [27]. For small values of Un
there is a general upward shift, proving that the Stanton

and G€ortler numbers are not yet the perfect scaling
parameters. We describe in detail below the four flow

zones outlined above.
3.3. Heat transfer signature of flow regimes

3.3.1. Heat transfer in two-dimensional laminar flow

(Gh < 3:5)
It is observed in Fig. 12 that all curves collapse in

their OA part and that points A correspond approxi-
mately to the same value of Gh ¼ 3:5; beyond this Gh

value the curves definitely separate from one another.

This separation is more apparent in the St vs. Gh curves

than the St vs. Re curves. For small values of Gh, the

amplitudes of the G€ortler vortices are small and they
thus have no effect on heat transfer at all. Therefore for

Gh < 3:5, the flat-plate correlation remains valid in the
range of parameters studied.
3.3.2. Heat transfer in three-dimensional laminar flow

(3:5 < Gh < 6:5)
In zone AB, the amplitude of the longitudinal vortices

becomes significant and the associated disturbances of

the velocity and temperature fields become nonlinear, as

indicated by Peerhosaini and Bahri [20] and To�e et al.
[24]. The result is an increasing deviation of the evolu-

tion of St from that of the flat-plate value; for the

same value of Rex heat transfer is increased in the con-
cave boundary layer over two-dimensional (flat-plate)

laminar flow. Vorticity growth (vortex intensity) com-

bined with the average increase in d result in the for-
mation of the ‘‘plateaus’’ AB. On these plateaus

the (constant) value of St depends strongly on the Un;
there is neither an explanation of nor a simple law to

predict this behaviour. Comparison of Figs. 11 and 12

highlights the fact that, while the Re corresponding to
point B varies from curve to curve, the Gh range for

which the plateau occurs is always the same,

3:5 < Gh < 6:5.
3.3.3. Heat transfer in unsteady flow (6:5 < Gh < 9)

In the BC region, above Gh ¼ 6:5 the unsteadiness of
the flow grows and heat transfer reaches the turbulent

level with values sometimes above those for a turbulent

boundary layer on a flat plate. While the slopes of the

St–Re curves vary in the zone BC, they are always
identical on the St–Gh curves. Moreover, even if the use

of the (Blasius) momentum thickness h in calculating Gh

introduces an error in this three-dimensional flow

regime, one obtains roughly the same value of Gh for

all points C, Gh ¼ 9.

3.3.4. Heat transfer in turbulent flow (Gh > 9)

As shown in Fig. 12 and observed by Ajakh et al. [25]

in hot-wire velocity measurements, the flow can be

considered turbulent above Gh > 9. On the other hand,
in the St–Re representation this end of the transition to
turbulence does not appear for a unique value of Re.
Fig. 11 shows that in the presence of the longitudinal

G€ortler vortices transition appears earlier (at smaller
Reynolds number) for smaller nominal velocities. For

Un P 7 m/s�1 the description of the transition to turbu-

lence through the secondary instability of the G€ortler
vortices must be modified by the fact that transition

occurs before the G€ortler vortices grow. In an extreme
case, for very large Un, the transitional Reynolds num-
ber is attained on the leading edge or on the flat part

of the model before any centrifugal effect can become

active and therefore, before the vortices develop. To�e
et al. [24] found the same St–Re behaviour for Un ¼ 7
and 9 m/s, thus showing that for high velocities the

similarity of Re again becomes valid.
In fact, it should be noticed that at high velocities the

effect of curvature on heat-transfer enhancement in the

laminar and transitional zones is not as significant as at

low velocities. Fig. 12 also shows that for Un ¼ 7 m/s,
unsteadiness and transition to turbulence start at

Gh ¼ 4:5, which is below the value of 6.5 [24] necessary
for the occurrence of secondary G€ortler instabilities. On
the other hand, for lower velocities the G€ortler centri-
fugal instability develops with the resulting longitudinal

vortices that destabilize and induce a premature transi-

tion to turbulence in terms of Re. The results in Fig. 11
confirm that globally Gh lets us follow these phenomena.

3.4. Effects of upstream disturbances

Several studies have shown that the wavelength

selection of the primary G€ortler instability kz depends on

the upstream flow conditions. Bradshaw [28] showed

that the wavelength could be modified by the last grid in

the settling chamber. A systematic experimental study of

different disturbance-generator configurations carried

out by Kottke [29,30] shows that the vortex wavelength

depends directly on the distance between the disturbance

generators and the entry of the flow into the unstable



Fig. 14. Effects of wire diameter on the evolution of the Stan-

ton number versus Reynolds number for Un ¼ 4:8 m/s, kz ¼ 3
cm.
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zone. Petitjeans [12] controlled vortex wavelength by

regularly spaced cross-flow jets. Swearingen and

Blackwelder [14] observed that the replacement or

rotation by 90� of the last grid in the settling chamber
modified both the relative position and the wavelength

of the vortices. It should be noted that kz ¼ 23 mm
in their experiments is an average value obtained by

spectral analysis.

Swearingen and Blackwelder’s [14] results were used

in validating several numerical studies. Sabry and Liu

[15] and Liu and Lee [31] showed numerically that the

value of kz agreeing with experimental results is 18 mm.

The same value was used by Liu and Domaradzki [32] in

a direct numerical simulation of the transition in tem-

poral G€ortler problem; their results show good agree-
ment with those of Swearingen and Blackwelder [14].

Therefore, the statistical averaged 23 mm wavelength

seems to have no real physical significance. Indeed, since

kz is a local parameter, it is more clear if it is forced

externally rather than letting it be imposed by the set-

tling chamber grids or other uncontrolled perturbations.

Thus the precise forced perturbation in the present

experiments gives more accurate control of the upstream

flow conditions. The several disturbance grids used were

made up of two series of wires 0.18 or 0.80 mm in

diameter; the forcing wavelengths were 5, 10, 20, 30, 40,

50 or 60 mm.

3.4.1. Effects of the wire diameter

Figs. 13 and 14 show the effect of wire diameter on

the Stanton number versus G€ortler and Reynolds

number for Un ¼ 4:8 m/s. The wire wavelength is 30 mm
and the grid is placed vertically 4 mm upstream of the

model leading edge. Correlations for laminar and tur-
Fig. 13. Effects of wire diameter on the evolution of the Stan-

ton number versus G€ortler number for Un ¼ 4:8 m/s, kz ¼ 3 cm.
bulent boundary layers on a flat-plate are also super-

posed. Three cases are studied: no perturbation grid,

0.18 and 0.80 mm diameter wires. The case without

perturbation grid is indicated by dw ¼ 0.
The curves of St evolution follow the tendency de-

scribed in the previous sections. At low G€ortler num-
bers, they follow the laminar flat-plate curve; they

deviate from it at Gh � 3:8 (Rex � 0:45
 105) for
dw ¼ 0:80 mm, at Gh � 4:5 (Rex � 0:55
 105) for
dw ¼ 0:18 mm and at Gh � 4:8 (Rex � 0:65
 105)
for dw ¼ 0. A constant Stanton-number plateau then

begins to develop that reflects heat-transfer enhance-

ment by G€ortler vortices for dw ¼ 0 and 0.18 mm. The
end of the plateau corresponds to the state in which the

vortices start to become time-dependent. The Stanton

number increases under the effect of vortex meandering

until it reaches the turbulent boundary layer curve,

where the vortex structure has broken down and tur-

bulence has set in. Beyond this point the experimental

results follow the trend of the turbulent flat-plate curve.

If the model wall surface were longer, one would

expect the curve of Stanton number to relax towards

that of the turbulent flat-plate boundary layer. The

maximum augmentation (compared to the laminar flat-

plate boundary layer) of the Stanton number occurs for

dw ¼ 0:18 mm at the end of the characteristic plateau

(Gh � 6) where the vortices are fully developed.
For dw ¼ 0:80 mm the transition development sce-

nario is different. As shown in Figs. 13 and 14, the

plateau of constant Stanton number does not appear

at all. The experimental points follow the laminar flat

plate curve up to Gh � 3:8 (Rex � 0:45
 105), then
deviate from it and rapidly increase to join the turbulent



Fig. 16. Effects of forcing wavelength on the evolution of the

Stanton number versus Reynolds number for Un ¼ 4:8 m/s and
dw ¼ 0:80 mm.
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flat-plate curve. This fast transition suggests that bypass

transition occurs here. However, for the two types of

perturbation grid, once the flow has become fully tur-

bulent, it follows the trend of the turbulent flat-plate

boundary layer with a slightly higher Stanton number.

3.4.2. Wavelength effect

Fig. 15 shows the evolution of the Stanton number

versus Reynolds number with Un ¼ 4:8 m/s for various
kz ¼ 5, 10, 20, 30, 40, 50, 60 mm and dw ¼ 0:18 mm
and also without perturbation grid. At low Reynolds

numbers, all experimental points follow the laminar flat-

plate curve. They depart from it at Rex ¼ 0:45
 105
(Gh � 3:8) for kz ¼ 5 mm, kz ¼ 10 mm and kz ¼ 20 mm
(kz 6 20 mm). However, for kz > 20 mm this deviation
occurs at Rex ¼ 0:55
 105 (Gh � 4:5) and a uniform-
Stanton-number plateau starts to appear, illustrating

heat-transfer enhancement by G€ortler vortices.
These two different types of evolution should be

interpreted as a consequence of wavelength. At large

wavelengths the perturbations induced by the grid are

weak and the generated G€ortler vortices do not signifi-
cantly modify the transition to turbulence described in

Section 3.1. However, for kz 6 20 mm, the spatial density

of the input perturbation seems to go beyond a critical

value and imposes a direct transition to turbulence. For

these high-perturbation cases, the transition can be

considered a bypass transition and heat transfer in-

creases with the perturbation increase (kz decrease).

The highest increase (compared to the laminar flat-

plate boundary layer) in Stanton number appears for the

three lowest spanwise wavelengths, at the end of the
Fig. 15. Effects of forcing wavelength on the evolution of the

Stanton number versus Reynolds number for Un ¼ 4:8 m/s and
dw ¼ 0:18 mm.
transition zone. If the flow is perturbed by a large dw and
small kz grid, it is evident that bypass transition will

occur, as shown in Fig. 16. It is interesting to note in this

figure that vortices with wavelength less than kz ¼ 30
mm advance the transition to turbulence compared with

those of kz P 30 mm. This can be attributed to the

sensitivity of the bypass transition to the level of the

upstream perturbations or turbulent intensity [33]. One

notices, however, that for kz ¼ 5 mm, from the begin-

ning the Stanton number follows the trend of the curve

for a turbulent flat-plate boundary layer but at a much

higher Stanton number value.

The effects of forcing wavelength expressed in terms

of maximum Stanton number increase (%) are compared

with the no-perturbation-grid case in Table 2. Table 3

shows the values of transitional Reynolds number and

G€ortler number with different experimental configura-
tions (wavelength and wire diameter) in the present

work and for Un ¼ 4:8 m/s. More details of the wave-
length effects on heat transfer enhancement can be found

in [34].
Table 2

Effects of forcing wavelength expressed in terms of maximum

Stanton number increase (%) compared with no perturbation

grid case

k
(mm)

5 10 20 30

St 41%

(Gh ¼ 4:2)
20%

(Gh ¼ 4:5)
15%

(Gh ¼ 5)
10%

(Gh ¼ 6:5)
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4. Concluding remarks and discussion

Experiments under well-controlled conditions were

carried out on a concave heated wall in order to

understand the effects of G€ortler instability and its
transition to turbulence on heat transfer from the wall to

the boundary layer. Another aim was to obtain reliable

data and pertinent dimensionless parameters to scale the

heat-transfer problem most appropriately. Since the

streamwise evolution of heat transfer under the effects of

streamwise vorticity was of special interest, in these

experiments (unlike those in [24,25]), time-averaged wall

temperature was used as the signature of the G€ortler
vortices. Thus the longitudinal evolution of heat transfer

expressed in terms of conventional Nusselt number and

the Stanton number was related to the axial evolution of

the G€ortler vortices. In heat transfer analysis, it is cus-
tomary to use the Nusselt or the Stanton number

without distinction. The present work shows, however,

that the Stanton number reflects more directly than the

Nusselt number the effects of longitudinal vorticity on

heat transfer. In the same manner, the G€ortler number
scales the flow reasonably, while the Reynolds number

does not. Thus the G€ortler number emerges as the nat-
ural control parameter from the Navier–Stokes equa-

tions written in curvilinear coordinates for the analysis

of G€ortler stability.
Nonetheless, as has been argued theoretically by Hall

[1] and shown experimentally, the notion of a unique

marginal stability curve, so common in stability analysis,

is not valid for G€ortler stability. The critical value of
the G€ortler number Gh depends on where and how up-

stream perturbations were generated before entering the

boundary layer. This raises questions about the funda-

mental pertinence of the G€ortler number as the scaling
parameter and its preference to the simple Reynolds

number. The present work, from the study of a large

number of experimental cases, concluded that the

G€ortler number predicts satisfactorily the different

stages of G€ortler stability:

• primary G€ortler instability appears for Gh > 3:5;
• secondary G€ortler instability occurs for Gh > 6:5;
• transition to turbulence is accomplished for Gh > 9.

Nevertheless, Fig. 12 shows that experimental curves do

not collapse in the St–Gh plane, suggesting that these two

dimensionless parameters are still not the perfect ideal

scaling parameters.

At this stage there exists no clear clue to such ideal

parameters. This difficulty can be attributed to the fact

that the convectional definition of the Stanton number is

not adapted to the flows with coherent structures such as

G€ortler vortices. This definition takes into consideration
neither the spanwise components of the velocity nor its

upwash and downwash components, which contribute
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much to the enhancement of heat transfer from the wall.

To these one can add the time dependence of the axial

velocity due to the higher modes of instability. To take

these effects into account, one can introduce into the

Stanton number an ‘‘effective’’ velocity Ueff defined as

Ueff ¼ Upw þ a~m þ bu0rms

where m is the spanwise and upwash or downwash
components, u0rms is the time-dependent components,
and a and b are constants to be evaluated experimen-
tally. This hypothesis needs to be studied in more detail.

It was also shown that correlations for the prediction

of Stanton number on a flat plate in laminar region

work quite well for a concave wall if Gh does not exceed

3.5. In a concave boundary layer, transition can occur

through different mechanisms. If transition is triggered

by G€ortler instability, it is characterized in the St–Gh

plane by a constant Stanton-number plateau where heat-

transfer enhancement by the vortices balances the heat-

transfer reduction due to the boundary-layer thickening

(corresponding to zone AB in Fig. 9). However, the

Reynolds number can reach a critical value around

0.65· 105 before the G€ortler number increases above
3.5. In this case (for example Un > 7 m s�1 in Fig. 11),
transition is not by G€ortler instability, as To�e et al. [24]
found. Experiments have shown that many flows,

including boundary-layer flows, may undergo transition

to turbulence at low Reynolds numbers, well below the

critical value from the linear stability theory. This

transition mechanism, named ‘‘bypass transition’’ in

1969 by Morkovin [33], implies that ‘‘we can bypass

the Tollmien–Schlichting (or other mechanisms) alto-

gether’’. Ellingsen and Palm [35] considered the inviscid

evolution of an initial disturbance independent of the

streamwise coordinate and proposed a mechanism

according to which streamwise velocity may grow line-

arly in time and produce alternating high- and low-

velocity streaks. It was later shown by Schmidt and

Henningson [36] through the linearized Navier–Stokes

equations that significant transient growth may occur

before the exponential growth of the perturbation in-

duces transition. Such transient growth is larger for

disturbances that are periodic in the spanwise direction;

it can exist for subcritical values of Reynolds number

and is the mechanism underlying the bypass transition.

In the case of a concave wall, weak spanwise periodic

perturbations that have not been able to evolve to

G€ortler vortices (due to insufficient Gh value) thus con-

tribute to the occurrence of the bypass transition and

significantly increase the heat transfer from the wall.
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